National Emerging Infectious Diseases Laboratories Papers
Permanent URI for this collection
Browse
Recent Submissions
Item Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus(Public Library of Science, 2010-1-15) Valmas, Charalampos; Grosch, Melanie N.; Schümann, Michael; Olejnik, Judith; Martinez, Osvaldo; Best, Sonja M.; Krähling, Verena; Basler, Christopher F.; Mühlberger, ElkePrevious studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFN/α/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNa/α/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling. Author SummaryThe closely related members of the filovirus family, Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic disease in humans with high fatality rates. Infected individuals exhibit dysregulated immune responses which appear to result from several factors, including virus-mediated impairment of innate immune responses. Previous studies demonstrated that both MARV and EBOV block the type I interferon-induced Jak-STAT signaling pathway. For EBOV, the viral protein VP24 mediates the inhibitory effects by interfering with the nuclear translocation of activated STAT proteins. Here, we show that MARV uses a distinct mechanism to block IFN signaling pathways. Our data revealed that MARV blocks the phosphorylation of Janus kinases and their target STAT proteins in response to type I and type II interferon and interleukin 6. Surprisingly, the observed inhibition is not achieved by the MARV VP24 protein, but by the matrix protein VP40 which also mediates viral budding. Over-expression studies indicate that MARV VP40 globally antagonizes Jak1-dependent signaling. Further, we show that a MARV VP40 mutant defective for budding retains interferon antagonist function. Our results highlight a basic difference between EBOV and MARV, define a new function for MARV VP40 and reveal new targets for the development of anti-MARV therapies.Item TB Database: An Integrated Platform for Tuberculosis Research(Nucleic Acids Research, 2009-1) Reddy, T. B. K.; Riley, Robert; Wymore, Farrell; Montgomery, Phillip; DeCaprio, Dave; Engels, Reinhard; Gellesch, Marcel; Hubble, Jeremy; Jen, Dennis; Jin, Heng; Koehrsen, Michael; Larson, Lisa; Mao, Maria; Nitzberg, Michael; Sisk, Peter; Stolte, Christian; Weiner, Brian; White, Jared; Zachariah, Zachariah K.; Sherlock, Gavin; Galagan, James E.; Ball, Catherine A.; Schoolnik, Gary K.The effective control of tuberculosis (TB) has been thwarted by the need for prolonged, complex and potentially toxic drug regimens, by reliance on an inefficient vaccine and by the absence of biomarkers of clinical status. The promise of the genomics era for TB control is substantial, but has been hindered by the lack of a central repository that collects and integrates genomic and experimental data about this organism in a way that can be readily accessed and analyzed. The Tuberculosis Database (TBDB) is an integrated database providing access to TB genomic data and resources, relevant to the discovery and development of TB drugs, vaccines and biomarkers. The current release of TBDB houses genome sequence data and annotations for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and microarray analysis software. By bringing together M. tuberculosis genome annotation and gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a unique discovery platform for TB research.Item Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates(Public Library of Science Pathogens, 2008-11-28) Geisbert, Thomas W.; Daddario-DiCaprio, Kathleen M.; Lewis, Mark G.; Geisbert, Joan B.; Grolla, Allen; Leung, Anders; Paragas, Jason; Matthias, Lennox; Smith, Mark A.; Jones, Steven M.; Hensley, Lisa E.; Feldmann, Heinz; Jahrling, Peter B.Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV. Author SummaryEbola virus is among the most lethal microbes known to man, with case fatality rates often exceeding 80%. Since its discovery in 1976, outbreaks have been sporadic and geographically restricted, primarily to areas of Central Africa. However, concern about the natural or unnatural introduction of Ebola outside of the endemic areas has dramatically increased both research interest and public awareness. A number of candidate vaccines have been developed to combat Ebola virus, and these vaccines have shown varying degrees of success in nonhuman primate models. Safety is a significant concern for any vaccine and in particular for vaccines that replicate in the host. Here, we evaluated the safety of our replication-competent vesicular stomatitus virus (VSV)-based Ebola vaccine in SHIV-infected rhesus monkeys. We found that the vaccine caused no evidence of overt illness in any of these immunocompromised animals. We also demonstrated that this vaccine partially protected the SHIV-infected monkeys against a lethal Ebola challenge and that there appears to be an association with levels of CD4+ lymphocytes and survival. Our study suggests that the VSV-based Ebola vaccine will be safe in immunocompromised populations and supports further study and development of this promising vaccine platform for its use in humans.Item Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection(Public Library of Science, 2010-5-18) Geisbert, Thomas W.; Daddario-DiCaprio, Kathleen M.; Hickey, Andrew C.; Smith, Mark A.; Chan, Yee-Peng; Wang, Lin-Fa; Mattapallil, Joseph J.; Geisbert, Joan B.; Bossart, Katharine N.; Broder, Christopher C.Nipah virus (NiV) is an enigmatic emerging pathogen that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75 percent and there are no vaccines or treatments approved for human use. Guinea pigs, hamsters, cats, ferrets, pigs and most recently squirrel monkeys (New World monkey) have been evaluated as animal models of human NiV infection, and with the exception of the ferret, no model recapitulates all aspects of NiV-mediated disease seen in humans. To identify a more viable nonhuman primate (NHP) model, we examined the pathogenesis of NiV in African green monkeys (AGM). Exposure of eight monkeys to NiV produced a severe systemic infection in all eight animals with seven of the animals succumbing to infection. Viral RNA was detected in the plasma of challenged animals and occurred in two of three subjects as a peak between days 7 and 21, providing the first clear demonstration of plasma-associated viremia in NiV experimentally infected animals and suggested a progressive infection that seeded multiple organs simultaneously from the initial site of virus replication. Unlike the cat, hamster and squirrel monkey models of NiV infection, severe respiratory pathology, neurological disease and generalized vasculitis all manifested in NiV-infected AGMs, providing an accurate reflection of what is observed in NiV-infected humans. Our findings demonstrate the first consistent and highly pathogenic NHP model of NiV infection, providing a new and critical platform in the evaluation and licensure of either passive and active immunization or therapeutic strategies for human use.