The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin

Date
2020-04-03
Authors
Chin, Hang Gyeong
Esteve, Pierre-Olivier
Ruse, Cristian
Lee, Jiyoung
Schaus, Scott E.
Pradhan, Sriharsa
Hansen, Ulla
Version
Published version
OA Version
Citation
H.G. Chin, P.-O. Esteve, C. Ruse, J. Lee, S.E. Schaus, S. Pradhan, U. Hansen. 2020. "The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin." Journal of Biological Chemistry, Volume 295, Issue 14, pp.4748-4759. https://doi.org/10.1074/jbc.RA119.010951
Abstract
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Description
License
© 2020 Chin et al. Published by The American Society for Biochemistry and Molecular Biology, Inc. This is an Open Access article under the CC BY license.